Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Genet. mol. res. (Online) ; 4(1): 55-66, Mar. 2005.
Article in English | LILACS | ID: lil-417409

ABSTRACT

An association of two techniques, nuclear transfer (NT), and transfection of somatic animal cells, has numerous potential applications and considerable impact, mainly in agriculture, medicine, pharmacy, and fundamental biology. In addition, somatic cell nuclear transfer is the most efficient alternative to produce large transgenic animals. We compared in vitro and in vivo developmental capacities of NT using fibroblast cells isolated from a 14-month-old cloned Simmental heifer (FCE) vs the same line transfected with a plasmid containing neomycin-resistant genes (TFCE). There were no significant differences (P > 0.5) in either fusion (116/149 = 78% vs 216/301 = 72%), cleavage (78/116 = 67% vs 141/216 = 65%) and blastocyst (35/116 = 30% vs 52/216 = 24%) rates or in pregnancy rate at 30 to 35 days after embryo transfer (2/17 vs 3/17) between NT using FCE and TFCE, respectively. Transfection and long-term in vitro culture of transfected cells did not affect developmental capacity of NT embryos up to 40 days of gestation


Subject(s)
Animals , Female , Pregnancy , Animals, Genetically Modified , Cattle/genetics , Embryo Transfer , Fibroblasts/transplantation , Cell Nucleus/transplantation , Blastocyst/physiology , Cloning, Organism , Clone Cells/physiology , Polymerase Chain Reaction , Transfection/methods
2.
Genet. mol. res. (Online) ; 4(4): 812-821, 2005. tab, ilus
Article in English | LILACS | ID: lil-444840

ABSTRACT

Transgenesis in cattle has provided numerous opportunities for livestock production. The development of nuclear transfer (NT) technology has improved the production of transgenic livestock. However, the isolation of pure colonies from a single transfection event remains laborious and can be a constraint in the production of transgenic livestock. We used 96-well cell culture plates to isolate cell lineages obtained from a single fibroblast transfected with the pCi-Neo plasmid. Since single mammalian cells do not grow well in fresh medium, we evaluated the use of conditioned medium. The neomycin phosphotransferase gene was detected in isolated colonies and NT embryos were produced from these cells. Multiplex-PCR assays were performed to detect the transfected fragment as well as autosomal satellite DNA in single NT embryos. This approach provided a reliable method for isolating transfected mammalian cells and for diagnosing the incorporation of desirable vectors in NT embryos. This method can reduce the time and cost of transgenic livestock production.


Subject(s)
Animals , Animals, Genetically Modified/genetics , Cattle/genetics , Transgenes/genetics , Nuclear Transfer Techniques , Animals, Genetically Modified/embryology , Cattle/embryology , Fibroblasts/cytology , Cell Nucleus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL